Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display.

نویسندگان

  • Fei Wen
  • Dhruv K Sethi
  • Kai W Wucherpfennig
  • Huimin Zhao
چکیده

Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2-MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial Cell Surface Display: Its Medical and Environmental Applications

Cell-surface display is the expression of peptides and proteins on the surface of living cells by fusing them tofunctional components of cells which are exposed to the environment of cells. This strategy can be carriedout using different surface proteins of cells as anchoring motifs and different proteins from different sourcesas a passenger protein. It is a promising strategy...

متن کامل

Development of a novel strategy for engineering high-affinity proteins by yeast display.

Yeast display provides a system for engineering high-affinity proteins using a fluorescent-labeled ligand and fluorescence-activated cell sorting (FACS). In cases where it is difficult to obtain purified ligands, or to access FACS instrumentation, an alternative selection strategy would be useful. Here we show that yeast expressing high-affinity proteins against a mammalian cell surface ligand ...

متن کامل

Yeast surface display of a noncovalent MHC class II heterodimer complexed with antigenic peptide.

Microbial protein display technologies have enabled directed molecular evolution of binding and stability properties in numerous protein systems. In particular, dramatic improvements to antibody binding affinity and kinetics have been accomplished using these tools in recent years. Examples of successful application of display technologies to other immunological proteins have been limited to da...

متن کامل

Enhanced Bioadsorption of Cadmium and Nickel by E. coli Displaying A Metal Binding Motif Using CS3 Fimbriae

Display of peptides on the surface of bacteria offers many new and exciting applications in biotechnology. Fimbriae is a good candidate for epitope display on the surface of bacteria. The potential of CS3 fimbriae of enterotoxigenic E. coli as a display system has been investigated. A novel cell surface display system with metal binding property was developed by using CS3 fimbriae. Short metal ...

متن کامل

Directed evolution of soluble single-chain human class II MHC molecules.

Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers that present antigenic peptides to T cells. Expression of these molecules in soluble form has met limited success, presumably due to their large size, heterodimeric structure and the presence of multiple disulfide bonds. Here we have used directed evolution and yeast surface display to engineer soluble ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering, design & selection : PEDS

دوره 24 9  شماره 

صفحات  -

تاریخ انتشار 2011